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ALFA Contributions

■ Extension of the mDSDI [1] technique for Domain
Generalization (DG) of unseen hospital image repository.

■ Concatenation of disentangled Self-Supervised Learning
(SSL), domain-invariant, and domain-specific representations
forms the different levels of feature abstraction.

■ Introduced "soft class-domain alignment" loss function that
provides increased stability during optimization compared to
the adversarial training.

■ Tested on the PACS benchmark and a Renal Cell Carcinoma
(RCC) subtyping task from The Cancer Genome Atlas
(TCGA) data portal.
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Figure 1: The Venn diagram delineates the feature space of the source hospitals
(H1 and H2). The yellow area demarcates the label space employed in the
classification task. The shared space between feature and label spaces underscores
the features conducive to executing tasks within the label space.

The visual differences in digital pathology

Figure 2: Different distribution shifts happening in digital pathology setups.

Methodology of ALFA
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Figure 3: ALFA has two phases: In Phase I, three feature extractors extract
different levels of feature abstraction, and disentangled features are concatenated
for classification. In Phase II, updated feature extractors’ representations are
concatenated and fed into the updated classifier to update parameters in a
Meta-learning fashion while α′ and β′ feature extractors remain frozen.

Results on RCC subtyping

Table 1: Results on RCC subtyping task

Table 1. Results on RCC subtyping task
Accuracy (%) AUROC (%) Recall (%)

Target Source ERM mDSDI [1] HA [2] ALFA ERM mDSDI [1] HA [2] ALFA ERM mDSDI [1] HA [2] ALFA

IGC {NCI,
MSKCC,
H-MD}

75.86 86.20 70.42 86.21 93.23 95.78 88.36 95.33 57.14 82.88 62.38 85.39

NCI {IGC,
MSKCC,
H-MD}

81.82 72.73 83.38 86.36 96.49 94.46 97.32 97.83 83.08 71.46 85.48 86.41

MSKCC {IGC, NCI,
H-MD}

86.73 85.71 88.19 84.69 95.91 95.89 96.47 95.99 82.99 87.05 85.32 87.99

H-MD {IGC, NCI,
MSKCC}

72.49 51.72 75.29 65.52 85.38 88.37 90.16 90.48 72.96 51.85 78.42 66.67

Average
79.22
±5.36

74.09
±13.72

79.32
±6.49

80.69
±8.61

92.75
±4.34

93.62
±3.02

93.08
±3.34

94.90
±2.66

74.07
±10.38

73.31
±13.36

77.90
±8.44

81.62
±8.50

Figure 4: 2D feature embeddings for the feature extractors in mDSDI [1] versus
in ALFA: (target hospital: ‘NCI’). ‘All’ is the concatenation of domain-specific
and domain-invariant representations for the mDSDI [1] (up), and SSL,
domain-invariant, and domain-specific representations for ALFA (bottom).
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